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Abstract: In a system where chiral symmetry is spontaneously broken, the low energy

eigenmodes of the continuum Dirac operator are extended. On the lattice, due to dis-

cretization effects, the Dirac operator can have localized eigenmodes that affect physical

quantities sensitive to chiral symmetry. While the infrared eigenmodes of the Wilson Dirac

operator are usually extended even on coarse lattices, the chiral overlap operator has many

localized eigenmodes in the physical region, especially in mixed action simulations. De-

pending on their density, these modes can introduce strong lattice artifacts. The effect can

be controlled by changing the parameters of the overlap operator, in particular the clover

improvement term and the center of the overlap projection.
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1. Introduction

Mixed action simulations with overlap valence quarks on dynamical configurations gener-

ated with a non-chiral fermion action can combine the advantages of chiral operators in the

measurement with relatively fast configuration generation. The success of this approach

depends to a large extent on how well the valence action matches the sea action. At the

very least the valence action should not introduce any new large lattice artifacts. In this

paper we draw attention to a non-perturbative lattice artifact, due to localized eigenmodes

of the Dirac operator, that strongly affects the overlap operator, especially in mixed action

simulations.

In the phase where chiral symmetry is spontaneously broken, the low energy eigen-

modes of the continuum Dirac operator are expected to be extended, delocalized. We have

investigated the localization properties of the eigenmodes of the Wilson Dirac operator

and several different overlap operators. We found that while both the Wilson and overlap

operators have localized eigenmodes, in case of the Wilson Dirac operator these modes

usually do not mix with the infrared modes but they can become part of the low energy

spectrum of the overlap operator. The source of these modes are dislocations and the

localized modes of the overlap operator can be related to the localized modes of the kernel

operator. The density of these non-physical overlap modes depend on the kernel operator,

on the parameters of the overlap construction, on the gauge configurations (quenched or

dynamical or mixed action) and on the lattice spacing and can be particularly large in case

of quenched or mixed action simulations.

The physical effect of the localized eigenmodes is easily observable when the distribu-

tion of the Dirac eigenvalue spectrum is compared to the predictions of Random Matrix

Theory (RMT). RMT relies on very basic assumptions and in quenched systems the only
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Action Smearing cSW λcrit R0 ∆R0 = R0 − λcrit

S1 n-HYP 0 0.30 1.0 0.70

S2 n-HYP 0 0.30 0.7 0.40

S3 n-HYP 1 0.08 1.0 0.92

S4 n-HYP 1 0.08 0.3 0.22

T1 thin 0 0.90 1.4 0.50

Table 1: The parameters of the overlap action considered in this study. λcrit is the approximate

(real) lower bound of the complex kernel spectrum at β = 5.8458 as explained in section 2.

condition for its validity is that the wave functions of the non-zero Dirac eigenmodes are

extended over the whole volume [1, 2]. We show that the deviations between RMT pre-

dictions and the measured distributions are closely related to the density of the localized

overlap eigenmodes. We argue that some of the same lattice artifacts are responsible for

the rather large scaling violation effects observed in the topological susceptibility as well.

Our observations suggests that in order to minimize scaling violations in valence overlap

simulations it is not sufficient to rely on automatic perturbative O(a) improvement but

that non-perturbative lattice artifacts due to dislocations also have to be considered.

2. Notations and parameters

We want to study the lattice artifacts due to the localized low energy eigenmodes of the

overlap operator. We consider several different overlap operators, and in order to facilitate

the comparison between them we calculate their eigenvalues on the same quenched config-

uration set, consisting of about 1000 124 configurations with Wilson plaquette action at

β = 5.8458 (a ≈ 0.12fm).

Our definition of the massless overlap operator is

Dov = R0

(

1 + d(d†d)−1/2

)

, d = DK − R0 , (2.1)

where DK is the kernel operator and R0 denotes the center of the overlap projection. We

chose DK to be the Wilson operator with n-HYP smeared gauge connections [3, 4], both

unimproved and with tree level (cSW = 1) clover improvement. These kernel operators

were motivated by our ongoing dynamical simulations [4].

The choice of the parameter R0 in the overlap construction is rather arbitrary, as long

as it is larger than the eigenvalues of the physical, infrared modes of the kernel operator

but smaller than the doubler modes, and the resulting overlap operator is local. Since

the additive mass renormalization and hence the location of the IR edge of the spectrum

varies with the kernel action, the quantity ∆R0 = R0 − λcrit, with λcrit the location where

the IR edge of the complex spectrum intersects the real axis, characterizes the overlap

operator better than R0 itself. We have chosen two different ∆R0 values with both of our

kernel actions. The parameters are listed in table 1, where for reference we also give the

parameters of the overlap action used in [5] on configurations similar to ours.
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Figure 1: The spectrum of the two kernel operators used in this study. Both are n-HYP smeared

Wilson operators, one with tree level c SW = 1 clover coefficient (left panel), the other with c SW = 0

(right panel). The different plot symbols correspond to different localization levels of the correspond-

ing eigenvectors .

The parameter R0 = 1.4 in [5] was chosen by maximizing the locality of the thin link

unimproved overlap action T1. The localization of our overlap actions varies depending on

their parameters, but all of them are local.

3. The eigenvalue spectrum of the kernel and overlap Dirac operators

In this section we study the eigenvalue spectrum and the localization properties of the

eigenmodes of both the kernel and the overlap operators. Figure 1 shows the 40 lowest

magnitude eigenvalues on 100 configurations with both the cSW = 1 and cSW = 0 kernel

actions. (The apparent half-moon shape on the right is only an artifact, due to identifying

only the lowest magnitude eigenvalues.) From figure 1 we approximate λcrit = 0.08 and

0.30 for the cSW = 1 and cSW = 0 actions, as listed in table 1. Note that the spectrum

of the n-HYP smeared cSW = 1 operator appears much more chiral than the unimproved

one, its eigenvalues are concentrated around a unit circle. This is what makes this action

appealing in dynamical simulations [4].

A simple and very intuitive measure of the localization of the eigenmodes is the par-

ticipation number or inverse of the inverse participation ratio IPR [6]

p = IPR−1

IPR = V
∑

x

|ψ(x)|4 , (3.1)

where ψ(x) is the normalized eigenvector of the Dirac operator. p varies between 1/V and

1, the latter corresponding to a uniform wave function, the former to one localized on one
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lattice site. The participation number is only a qualitative measure: while a very small

p certainly implies a localized mode, a large value does not necessarily mean a coherent

extended one. In addition, the participation number is sensitive to local fluctuations, so

direct comparison is only meaningful between configurations with similar level of vacuum

fluctuations (or plaquette values). For reference we mention that for a fully separated

smooth instanton–anti-instanton pair of radii ρ/a = 2 the participation number is p ≈ 0.06

on 124 lattices. Therefore one expects that participation numbers p < 0.1, probably even

p < 0.2, correspond to a localized mode.

In figure 1 the different plotting symbols correspond to different participation numbers

of the eigenmodes, and one observes a strong correlation between p and ∆λ, the radial

distance of the eigenvalue from the outer edge of the approximate circle. Toward the

center of the eigenvalue circle all modes appear to be localized with small p for both

actions. However the spectrum of the clover improved action has many more localized

modes in the vicinity of the physical, IR range. The spectra in figure 1 are on 124 lattices.

We have investigated the localization of the modes also on 164 volumes, though with

smaller statistics. We found that the localization of the kernel operator eigenmodes is

not qualitatively different in larger volumes. The number of eigenmodes is proportional

to the volume, the participation number decreases with increasing ∆λ and the number of

localized modes in a 1/V region around the real axis is approximately independent of the

volume. There are particularly many localized real modes, especially with cSW = 1.

Since the participation number is strongly correlated with ∆λ, the distance form the

infra-red edge of the spectrum, it is meaningful to define the average participation p̄(∆λ)

as the average of the participation number of eigenvalues in the vicinity of the real axis

at ∆λ. If the typical eigenmodes at some ∆λ value correspond to extended modes, their

average participation p̄ should be volume independent, while in the region where most of

the eigenmodes are localized, p̄ will decrease with the inverse of the volume. Comparing

data on 124 and 164 lattices we see constant p̄ values for ∆λ < 0.03 and 1/V dependence

for ∆λ ≥ 0.05 for the cSW = 1 spectrum. This finite volume analysis suggests that on

the 124 lattices eigenmodes with participation number p < 0.40 at ∆λ ≈ 0.05 are already

localized. This in turn indicates that the overlap operator with the small ∆R = 0.22 of

action S4 is local since the center of the overlap projection is still beyond the physical,

extended eigenmodes.

The overlap construction “projects” all the modes of the kernel operator to the Ginsparg-

Wilson circle. Of course it does more than just simply project the modes - opposite chiral-

ity modes from the real axis merge and split into complex modes, and in general the wave

function, and with it the participation number of the modes, can change.

An example of how the overlap construction transforms the kernel modes is given in

figure 2 where a few of the low energy eigenvalues of the cSW = 1 kernel operator and

the corresponding overlap operator are shown on a configuration with a localized infrared

overlap eigenmode. All but one of the kernel eigenmodes in figure 2 are extended with

large participation numbers. The only exception is the mode in the inner part of the circle

that has participation number p ≈ 0.04. The eigenmodes of the overlap operator are also

extended with one exception, the mode with the lowest imaginary value has p ≈ 0.08.
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Figure 2: Eigenvalues of the kernel and overlap operator on a configuration where the overlap

operator has a localized IR mode. Lines connect overlap modes with the most similar kernel modes

and the magnitude of their inner product is shown.

The extended overlap eigenmodes all connect strongly to a kernel mode, with overlap

between the wave functions, i.e. the absolute value of their inner product, of 80% or larger.

The grey lines in figure 2 connect the overlap modes with the kernel mode with which

they have the highest overlap. It appears that the extended, near infrared eigenmodes

change little under the overlap projection, their eigenvalues basically move out straight to

the Ginsparg-Wilson circle. This is likely so because the n-HYP smeared kernel already

has excellent chiral properties and we would expect the situation to be quite different with

an unsmeared kernel.

The localized modes, on the other hand, behave differently. There is only one localized

overlap and one localized kernel mode in figure 2. The wave function of both of these modes

are sharply peaked at the same spatial location, they couple mainly to a small instanton (or

dislocation). The overlap of the wave functions is still sizable, ≈ 70%, but the eigenvalues

are different. The overlap eigenvalue is small, it is the most infrared among the eigenmodes.

In general localized modes tend to stay localized under the overlap projection, their overlap

eigenvalue is frequently small, without modifying the eigenvalues of the extended modes.

Hence these non-physical eigenmodes can strongly influence the low energy structure of

the systems.

To quantify the observations from figures 1 and 2 we have measured the participation

number of the low eigenmodes of our four overlap operators. Figure 3 shows the distribution

for the first non-zero modes in the ν = 1 topological sector. The result supports what

we have expected based on the eigenmodes of the kernel operator. The S3 action, that

corresponds to cSW = 1 improved kernel operator with R0 = 1.0, has a lot of localized

modes - possibly up to 50% of the first eigenmodes are localized. The other actions are

considerably better. When R0 = 0.3 is used even with the clover improved action, many of
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Figure 3: The distribution of the participation number of the first non-zero overlap eigenmodes

in the ν = 1 sector, normalized by the number of configurations.

the localized modes are already to the right of the overlap center and projected to the ultra-

violet. Removing the clover term has a similar effect. Even with R0 = 1.0, corresponding

to ∆R0 = 0.7, there are only a few localized modes, and their number drops even further

when R0 = 0.7 (∆R0 = 0.4) is chosen.

The localized eigenmodes are due to lattice dislocations and their number scales with

the lattice volume. They are non-perturbative cut-off effects and will make the continuum

extrapolation difficult. We have investigated the localization properties of the overlap

eigenvalues at a finer lattice spacing but same physical volume (β = 6.0 Wilson plaquette

action on 164 lattices) with the S2 action. The distribution of the participation numbers

of the first non-zero eigenmodes was slightly worse than the corresponding distribution on

the coarser lattices, making any kind of perturbative predictions difficult.

We have not investigated the localization of the overlap operator on larger physical

volumes, but based on the spectrum of the kernel operator, we expect that among the first

non-zero eigenmodes of the overlap operator there are as many localized modes in larger

volumes as in the smaller one. These lattice artifacts are not due to finite volume effects.

The localization of overlap eigenmodes have been studied recently in refs. [7, 8], though in

different context and only with a single overlap operator.

4. Consequences of localized overlap eigenmodes

In the continuum limit the eigenmodes of the Dirac operator are extended. The localized

modes we observed at finite lattice spacing are lattice artifacts but their presence could

influence any physical quantity that is sensitive to chiral symmetry, like the pion spec-

trum, the chiral condensate or the topological susceptibility. Here we study the latter two

quantities.

– 6 –



J
H
E
P
1
1
(
2
0
0
7
)
0
7
1

 

 

0 0.5 1 1.5
0

0.02

0.04

0.06

0.08

PSfrag replaements
R0

�r4 0 nHYP  SW=0nHYP  SW=1thin  SW=0
Figure 4: The topological susceptibility as a function of the overlap parameter R0 with thin link

and n-HYP smeared overlap. The dashed horizontal line is the continuum prediction from ref. [12].

4.1 The topological susceptibility

The topological susceptibility χ = 〈ν2〉/V , when defined via the index of the overlap opera-

tor, is a particularly sensitive measure of how the fermionic action observes the dislocations

of the vacuum. The index of the overlap is identical to the sum of the chirality (±1) of the

real modes of the kernel operator up to λ < R0 [9]. The real modes of the kernel operator

are easiest to identify by measuring the eigenvalues of the Hermitian operator γ5DK and

identifying when an eigenmodes crosses zero [10, 11]. The advantage of this approach is

that one automatically obtains the topological charge for arbitrary R0.

In figure 4 we show the dimensionless quantity χr4
0

as a function of R0 for the n-HYP

smeared cSW = 0 and 1 kernel overlap actions, and also for the unimproved thin link kernel

overlap action. To set the scale we use r0/a = 4.032 from ref. [13]. We have identified

the real modes of the kernel operators only below R0 < 1.4 (1.6 for the thin link kernel).

Had we extended these measurements further, we would have observed the susceptibility

saturate, then drop again when the right edge of the first eigenvalue circle is approached,

around R0 ≈ λcrit + 2. Recent studies of the topological susceptibility using a pure gauge

FF̃ topological charge operator predict χr4
0 = 0.0524(13) [12], while calculations with a

thin link overlap operator give χr4
0 = 0.059(3) [14] in the continuum limit. In figure 4

we observe not only large cut-off effects, but strong dependence on the R0 parameter,

especially for the cSW = 0 actions.

The cut-off effects are the consequence of the large number of real eigenmodes toward

the center of the eigenvalue circle seen in figure 1. Most of these modes are lattice artifacts,

dislocations. Overlap operators with smaller R0 values are less sensitive to these inner

modes and therefore show smaller lattice artifacts, but defining the susceptibility where

the susceptibility curve is steeply rising is rather arbitrary. Since λcrit depends on the lattice

spacing, a small fixed R0 value can also lead to non-monotonic or falsely flat behavior of
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Figure 5: The cumulative distribution of the first three eigenmodes in the ν = 1 topological sectors.

Left panel: c SW = 1; right panel: c SW = 0. The smooth thick lines are the RMT predictions.

the susceptibility as a function of the lattice spacing. Large R0, on the other hand, creates

large cut-off effects. Perhaps the most reliable continuum extrapolation with smallest

lattice artifacts would come from where the parameter ∆R0 = R0 − λcrit is kept fixed at a

small value but where the overlap operator is still local.

4.2 The eigenvalue distribution and the chiral condensate

The distribution of the low lying Dirac eigenmodes should follow the universal predictions

of Random Matrix Theory for extended eigenmodes. Localized modes embedded in the

IR can spoil the agreement between the measured and predicted distributions. According

to RMT the probability distribution of the kth eigenvalue of the Dirac operator in fixed

topological sector ν is given as

pν,k(λ) =
a

ΣV
Λν,k (4.1)

with only one free parameter, ΣV/a, where Σ is the chiral condensate. The universal

functions Λν,k can be calculated analytically [1]. In numerical studies one frequently uses

the cumulative or integrated distribution,

cν,k(λ) =

∫ λ

0

dz pν,k(z) . (4.2)

Previous studies of quenched QCD found agreement with RMT predictions when aver-

ages 〈λ〉 or ratios of averages were considered on volumes of at least (1.5fm)4 for ν ≤ 2 and

k ≤ 4 [5], but the actual shape of the eigenvalue distributions shows significant deviations,

especially for the higher modes [15, 16].

In figure 5 we present our results for the cumulative distribution using the Dirac

operators S1-S4 listed in table 1. We consider only the ν = 1 topological sector, since for

all 4 actions close to a third of the configurations belong there, though the other sectors

give similar results. We fix the free parameter ΣV/a by fitting the cumulative distributions
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n = 1 n = 2 n = 3

action smearing c SW R0 Nconf ΣV/a S S ΣV/a Dmax Q Dmax Q Dmax Q

S1 n-HYP 0 1.0 279 90.8(2.0) 1.43 130(3) 0.056 0.335 0.081 0.047 0.090 0.021

S2 n-HYP 0 0.7 271 68.4(1.0) 1.75 120(2) 0.063 0.227 0.074 0.095 0.072 0.118

S3 n-HYP 1 1.0 318 143.2(2.4) 1.09 156(3) 0.103 0.002 0.121 0.000 0.187 0.000

S4 n-HYP 1 0.3 279 97.9(1.2) 1.36 133(2) 0.039 0.781 0.082 0.046 0.098 0.009

T1 thin 0 1.4 436 99.4(2.9) 2.80 268(8) 0.074 0.015 0.074 0.016 0.108 0.000

Table 2: Results of the RMT fit of the cumulative distributions in the ν = 1 topological sector.

The raw data for the T 1 action is from ref. [5].

to the RMT predictions. We follow the Kolmogorov-Smirnov procedure and maximize

the quality factor Q ,i.e. the confidence level that the numerical data is described by the

theoretical predictions [17]. The results we present here correspond to a combined fit to

the lowest three modes of a given Dirac operator, but the fit results are very similar if one

includes only one or two of the modes.

In table 2 we give some details of the fit, including the value of ΣV/a and the individual

quality factors. Q depends exponentially on the number of configurations and on the square

of the maximal deviation Dmax between the predicted and measured cumulative curves.

When the deviation is systematic rather then statistical, Dmax is actually a better quantity

to characterize the fit [18] and we list its value also in table 2. We observe significant

variation in the fitted values of ΣV/a, even though the volume is the same for all actions.

The renormalized chiral condensate ZSΣ can show cut-off effects that we cannot estimate

without actually calculating the renormalization factors. However a simple calculation

already shows that the ZS factors can be very different for different overlap operators even

when the same smeared kernel action is used.

To illustrate this point let us model the kernel operator as DK = dov +λcrit, where dov

is an overlap operator with eigenvalues ηφ = 1 − eiφ. Since dov is a normal operator, the

eigenvalues λφ of Dov in eq. (2.1) can be immediately calculated. The scale factor between

dov and Dov, S = λφ/ηφ|φ≈0 depends on the parameters R0 and λcrit and is responsible for

most of the observed difference in ΣV/a. In table 2 we list the values of the scale factor

S and S ΣV/a as well. It is interesting to note that the ratio λφ/ηφ can show significant

dependence on φ when ∆R0 = R0 − λcrit is small even for small eigenvalues in the IR

range. For us the strongest dependence is for the action S4 where the effect is ≈ 5% for

eigenvalues that cover the range we consider here. Once the scale factor is taken into

account, the predicted values S ΣV/a are consistent for the S1, S2 and S4 actions, only the

S3 action with the largest deviation Dmax is statistically different.

As is evident from figure 5 and supported by the data in table 2, the first eigenmodes

are well described by the RMT curve, but the agreement gets progressively worse for

the higher modes. In general the cSW = 1.0 operators are worse than the unimproved

ones. This is surprising as the smeared kernel action has much better chiral properties

and the overlap operator is also more localized than with the unimproved kernel, however

understandable if the observed lattice artifacts are caused by the localized eigenmodes.

Comparing results of the topological susceptibility (figure 4) and the eigenvalue dis-
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Figure 6: Same as figure 5 but for the thin link T1 and n-HYP smeared cSW = 0, R0 = 0.7 S2

actions.

tributions we observe that lattice artifacts, or deviation form the continuum, correlate

closely for the two observables and with the number of localized eigenmodes of the overlap

operator (figure 3). The action S2 with cSW = 0, R0 = 0.7 deviates the least from the

continuum values, the action S3 with cSW = 1, R0 = 1.0 the most for both quantities.

Figure 6 compares the thin link T1 action of ref. [5] with the S2 data.1 These two

actions differ primarily in that S2 is n-HYP smeared. The smeared data agrees with the

theoretical predictions better, though comparison of the T1 and S1 actions (with larger

∆R0) shows no significant difference. Further smearing helps very little. Even with three

levels of n-HYP smearing the infrared spectrum of the kernel action changes little beyond

the reduction of λcrit, and consequently the cumulative eigenvalue distribution of the S2

action remains very similar to the one with only one level of smearing.

The localized eigenmodes and the deviations they cause are lattice artifacts, they will

disappear in the continuum limit. Nevertheless at finite lattice spacing they significantly

alter the lattice results.

5. Conclusion and discussion

We have investigated the localization properties of different overlap and their kernel opera-

tors in quenched systems. We found that the overlap operators can have many non-physical,

localized eigenstates in the infrared. They can be related to localized modes of the kernel

operator, but in the kernel operator they are typically inside the eigenvalue circle and do

not directly effect the low energy spectrum. It is the overlap construction that promotes

them to the infrared.

There their presence can cause significant scaling violations in quantities sensitive

to the properties of the low modes. We illustrated that by comparing the eigenvalue

1We thank P. Weisz for sharing with us the data from ref. [5]
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distribution of the low energy eigenmodes to the universal predictions of random matrix

theory and also by investigating the topological susceptibility. One can minimize the scaling

violation effects by choosing a better kernel operator, like the n-HYP smeared operator we

considered here, and by tuning the R0 parameter of the overlap construction as small as

the locality of the overlap operator would allow. Somewhat surprisingly we found that the

kernel operator with the best chiral properties, the clover improved operator, is actually

worse in the overlap construction as it has the most localized modes near the IR. A chiral

kernel operator reproduces itself in the overlap construction, so it is possible that other

improved kernel operators behave differently. There is indication that this is indeed the

case for the Fixed Point operator in ref. [8].

In this paper we considered only quenched systems, but mixed action simulations suffer

from the same problem. The localized modes of the kernel operator are far from the infrared

edge and therefore are not suppressed by the fermion determinant, yet the overlap can

project them into the infrared. Fully dynamical overlap simulations should fare better as

there the localized eigenmodes are suppressed just like any other small eigenvalue mode, so

while they are present, their number is at least not inflated. Nevertheless even in dynamical

overlap simulations it is worth minimizing the occurrence of the localized eigenmodes.
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